Product Preview **Zener Voltage Regulators** 200 mW SOD-323 Surface Mount

This series of Zener diodes is packaged in a SOD-323 surface mount package that has a power dissipation of 200 mW. They are designed to provide voltage regulation protection and are especially attractive in situations where space is at a premium. They are well suited for applications such as cellular phones, hand held portables, and high density PC boards.

- Standard Zener Breakdown Voltage Range 3.9 V to 18 V
- Steady State Power Rating of 200 mW
- Small Body Outline Dimensions: 0.067" x 0.049" (1.7 mm x 1.25 mm)
- Low Body Height: 0.035" (0.9 mm)
- Package Weight: 4.507 mg/unit
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- 2% Tolerance V_z

Mechanical Characteristics

- CASE: Void-free, transfer-molded plastic
- FINISH: All external surfaces are corrosion resistant
- MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 2605C for 10 Seconds
- LEADS: Plated with Pb/Sn for ease of solderability
- POLARITY: Cathode indicated by polarity band
- FLAMMABILITY RATING: UL 94 V-0
- MOUNTING POSITION: Any

ON Semiconductor®

http://onsemi.com

xx = Specific Device Code M = Date Code

ORDERING INFORMATION

SOD-323

CASE 477

STYLE 1

$\mathbf{Device}^{\dagger}$	Package	Shipping				
MM3ZxxxST1	SOD-323	3000/Tape & Reel				

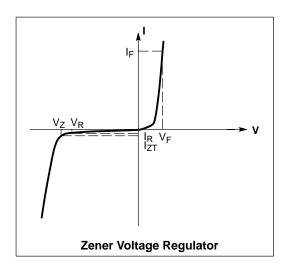
DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.

†The "T1" suffix refers to an 8 mm, 7 inch reel.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS

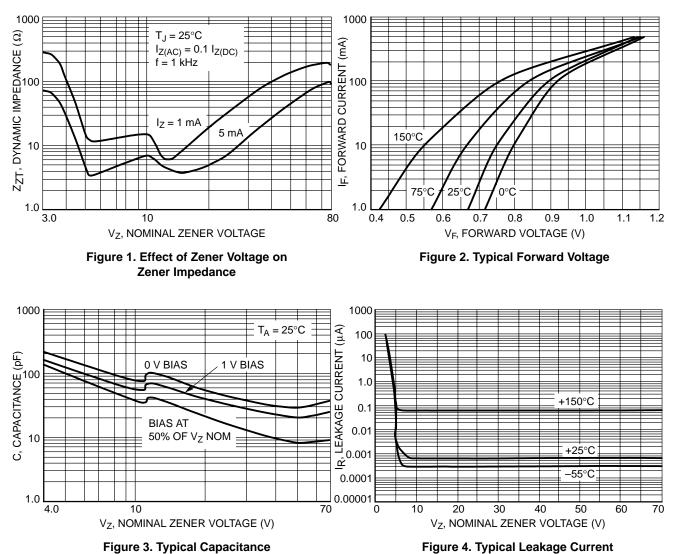

Rating	Symbol	Мах	Unit
Total Device Dissipation FR–5 Board, (Note 1) @ T _A = 25°C Derate above 25°C	PD	200 1.5	mW mW/°C
Thermal Resistance from Junction to Ambient	R _{θJA}	635	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. FR-4 Minimum Pad

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted}, V_F = 0.9 V Max. @ I_F = 10 mA for all types)$

Symbol	Parameter						
Vz	Reverse Zener Voltage @ IZT						
I _{ZT}	Reverse Current						
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}						
I _{ZK}	Reverse Current						
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}						
I _R	Reverse Leakage Current @ V _R						
V _R	Reverse Voltage						
١ _F	Forward Current						
V _F	Forward Voltage @ I _F						
ΘV_Z	Maximum Temperature Coefficient of V_Z						
С	Max. Capacitance $@V_R = 0$ and f = 1 MHz						



Device	Device Marking	Test Current Izt mA	Zener Voltage VZ (±2%)		Z _{ZK} I _Z	Z_{ZT} $I_Z = IZT$	Max IR @ VR		d _{VZ} /dt (mV/k) @ I _{ZT1} = 5 mA		0	
			Min	Nom (Note 2)	Max	= 0.5 mA Ω Max	@ 10% Mod Ω Max	μΑ	v	Min	Max	C pF Max @ V _R = 0 f = 1 MHz
MM3Z2V4ST1	T2	5.0	2.43	2.5	2.63	1000	100	120	1.0	-3.5	0	450
MM3Z2V7ST1	Т3	5.0	2.67	2.8	2.91	1000	100	100	1.0	-3.5	0	450
MM3Z3V6ST1	T6	5.0	3.60	3.7	3.85	1000	90	5.0	1.0	-3.5	0	450
MM3Z3V9ST1	T7	5.0	3.89	3.6	4.16	1000	90	3.0	1.0	-3.5	-2.5	450
MM3Z4V3ST1	Т8	5.0	4.17	4.3	4.43	1000	90	3.0	1.0	-3.5	0	450
MM3Z4V7ST1	Т9	5.0	4.55	4.7	4.75	800	80	3.0	2.0	-3.5	0.2	260
MM3Z5V1ST1	TA	5.0	4.98	5.1	5.2	500	60	2.0	2.0	-2.7	1.2	225
MM3Z5V6ST1	TC	5.0	5.49	5.6	5.73	200	40	1.0	2.0	-2.0	2.5	200
MM3Z6V2ST1	TE	5.0	6.06	6.2	6.33	100	10	3.0	4.0	0.4	3.7	185
MM3Z6V8ST1	TF	5.0	6.65	6.8	6.93	160	15	2.0	4.0	1.2	4.5	155
MM3Z7V5ST1	TG	5.0	7.28	7.5	7.6	160	15	1.0	5.0	2.5	5.3	140
MM3Z8V2ST1	TH	5.0	8.02	8.2	8.36	160	15	0.7	5.0	3.2	6.2	1358
MM3Z9V1ST1	ТК	5.0	8.85	9.1	9.23	160	15	0.5	6.0	3.8	7.0	130

ELECTRICAL CHARACTERISTICS (V_F = 0.9 Max @ I_F = 10 mA for all types)

2. Zener voltage is measured with a pulse test current I_Z at an ambient temperature of 25°C.

Typical Characteristics

Typical Characteristics

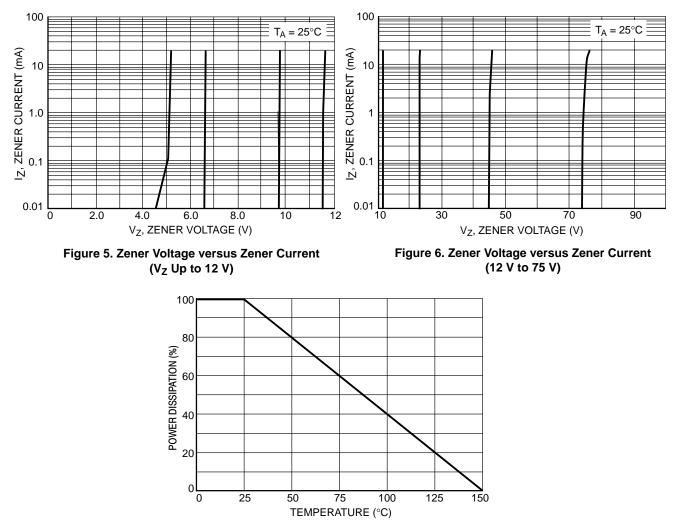
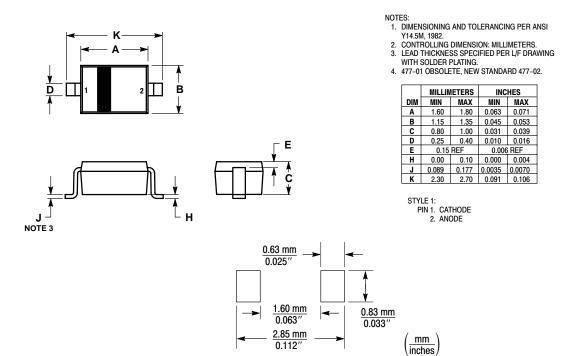



Figure 7. Steady State Power Derating

PACKAGE DIMENSIONS

SOD-323 CASE 477-02 **ISSUE C**

SOD-323

0.112"

<u>Notes</u>

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.